
 -

 - Page 1

SHARE Session #9777: WebSphere and Rational
Developer Hands-on-Labs – Building Java application
on System z with RDz

Lab exercise (estimate duration)

Part 1: Your first Java application on z/OS (~35 min)……………………………. Pg 2

Part 2: Writing & running Java applications with an affinity to z/OS (~20 min)…Pg 12

Introduction

This hands-on-lab is designed for those interested in learning how to develop and

run Java applications on z/OS. It shows you how to use a single integrated development

environment (IDE): IBM Rational Developer for System z (RDz) V8 to write, run, and

debug a Java application on your workstation, then have it run and debugged on z/OS by

leveraging the IBM Developer Toolkits for z/OS.

About this lab

There are two exercises in this lab.

The first exercise guides you through the process of creating a simple, platform-

independent “Hello world” Java application that displays the current date and time in a

specific output format. You will execute this program two ways: 1) using the Eclipse

Launch Configuration, and 2) using a JCL.

The second exercise guides you through the development of a Java application

with affinity to z/OS. This Java application reads the name of a PDS, and returns the list

of PDS members as the program output. You will learn how you can execute the

program using the Eclipse Launch Configuration.

Pre-requisites

• Basic understanding of Java programming

• Familiarity with basic z/OS concepts

Your User id for this lab is: SHARA__

Your password is: firstpw

 -

 - Page 2

Exercise 1 - Your first Java application on z/OS

In this exercise, you will learn how to use RDz to write, run, and debug a Java application

on Windows. Once that is completed, you will then export the Java application as a

remote Jar file to z/OS, and then you will run and debug this again on z/OS

Overview of tasks in this exercise

1. Creating the Java application

2. Running and debugging the application on Windows

3. Exporting the application to z/OS

4. Running the application on z/OS using a Host Java Application Launch Configuration

5. Running the application on z/OS as a batch step from JCL

 -

 - Page 3

1. Creating the Java application

a. Launch RDz by double clicking on the desktop icon “RDz 8.0.1”. From the pull-

down menu, select the workspace: “C:\workspace\RDzJava”, and click OK.

b. Once the application is loaded, you will see, in the title area, “z/OS Projects – IBM

Rational Developer for System z with Java”. This is the z/OS Projects perspective
1
.

c. The perspective is further customized for this lab with the addition of the Package

Explorer view and the Problems view.

d. You will see a project “PDSJavaProject” on the Package Explorer. This will be

used for Exercise 2. For now, just ignore it and the errors you see in the Problems

view.

e. Create a Java project.

i. From the menu, click File > New > Project…

ii. Select Java project from the list of wizards. Click Next.

iii. Name it HelloWorldProject. Accept all other default values. Click Finish.

The project will appear on the Package Explorer.

f. Create a Java package within the project

i. Select your project, right-click and select New > Other… Expand the Java

folder and select Package. Click Next.

ii. Name the package com.sharann, where sharann is your assigned userid for this

lab. Click Finish.

g. Import the Java source program

i. Select the package com.sharann, right-click and select Import…

ii. Expand the General folder, and then select File System. Click Next.

iii. On “From directory”, use the Browse… button to select the folder on your

desktop: SHARELabs\RDzJava\Exercise1. Click OK, and you’re returned to

the wizard.

iv. On the wizard, you should see a list of available files to be imported, select

HelloWorld.java. Click Finish, and the file is imported.

v. You will notice that there are a few error markers on your HelloWorld project.

This is because the imported java code is currently pointing to another package

that doesn’t exist. To fix it, open the HelloWorld.java program, click on the

marker beside “package” on the first line, to see available “Quick-fixes”

vi. Of the options provided to fix this, select “Change package declaration to

“com.sharann” to match the name of the package you created.

vii. Press CTRL+S to save the changes. You should see the error markers gone.

1
 In Eclipse, views (or windows) are organized and laid out as a unit known as Perspective. A Perspective

is a collection of related views that helps users accomplish specific goals. Some examples of perspective

are Java, Debug, z/OS Projects, etc.

 -

 - Page 4

2. Running and debugging on Windows

a. Run your Java application on Windows

i. Because this application does not have any z/OS resource dependency, you can

run it locally on Windows. To run, highlight your program HelloWorld.java,

right-click and select Run As > Java application. The program output is

displayed in the Console view at the lower section of your screen.

b. Debug your Java application on Windows

i. Before we begin debugging, open the Helloworld.java program in the editor,

and add a couple of breakpoints to the program by double-clicking on the grey-

column on the left hand side of the editor. For example, try to set a breakpoint

on line 11 (Date today =…)

ii. To debug the application, go back to the project, highlight HelloWorld.java,

right-click and select Debug As > Java Application.

iii. Select “Yes” if asked whether you want to switch to the Debug perspective.

iv. The Debug perspective opens, and you have access to full debugging

capabilities such as stepping through code, using breakpoints, and altering

variable values.

v. Since you had previously introduced a breakpoint on line 11, the Debug engine

is suspended at this line, waiting for your action.

vi. On the Debug view, there are a number of buttons in the toolbar area. You can

select the green Resume button to resume debugging. Or you can select one of

the Step buttons (Step into or Step over) to trace the program operations step

by step.

vii. Hover your mouse over the different buttons to see the name of the buttons.

Click on the Step Over button to advance your debug.

 -

 - Page 5

viii. As you continue your debug session, notice how other views, such as the

Variables view, refresh their contents to provide context sensitive information.

When you reach the end of the Debug session (you will see that all threads

are terminated on the Debug view), click on “z/OS Projects” button on the

top right corner of your perspective to return to the z/OS Projects

perspective.

3. Exporting the application to z/OS (and then we’ll run it on z!)

a. Authenticate to the SHARE system.

i. On the Remote Systems view, right-click on the connection

“mvs1.centers.ihost.com”, and select Connect…

ii. On the authentication dialog, enter your TSO ID for this lab (It should be:

sharann, where sharann is your assigned userid.)
2
 Your password is “firstpw”

iii. Under the system name, you should see nodes such as z/OS UNIX Files, z/OS

UNIX Shells, MVS Files, etc. Expand on these nodes to browse the file assets

under the MVS file system and the USS file system. (Note: please do not

delete any files unless explicitly instructed to).

b. Export your Java project.

To run your application on z/OS, you need to first export the project as a Jar

file to the Unix System Services (USS, i.e. HFS - the Hierarchical File

System).

i. On Package Explorer view, select your Java project, right-click and select

Export…

ii. Expand the Remote Systems folder, select Remote Jar file. Click Next.

iii. Under “Select the export destination”, click Browse to choose a location and a

name for the export .jar file. Browse to your connection:

2
 To save time, a connection to the z/OS system has been pre-configured for you in this lab.

 -

 - Page 6

mvs1.centers.ihost.com, expand the root node, and then select the directory

/sharelab/sharann/S8369/myJar. On the same dialog, enter a name for the file:

HelloWorldProject, and specify the archive type to be “jar”.

Click OK to exit the pop-up dialog. Click Next to advance to the next page.

iv. Ensure that the two checkboxes for exporting class files with compile errors

and compile warnings are unchecked. Click Next.

v. On this last page of the wizard, click the Browse… button for Main Class and

select HelloWorld from the pop-up.

vi. Click Finish.

 -

 - Page 7

4. Running the application on z/OS using a Host Java Application launch configuration

a. First, create the launch configuration
3
 file for running the program on z/OS On the

menu. To do so, go to the menu, click Run > Run Configurations…

b. From the dialog’s navigation panel, select Host Java Application. Right-click and

select New. Give this launch configuration a name, such as RunHelloWorldProject.

c. Fill in the details on the Main, Classpath, and Environment tabs using the

information below.

i. On the Main tab, enter the following (Suggestion: Use the Browse… button

whenever possible to avoid typos)

• Connection: mvs1.centers.ihost.com

• Select the checkbox “Has associated Java project”.

• Project: HelloWorldProject

• Main class: com.sharann.HelloWorld

• Remote working directory: /sharelab/sharann/S8369/myJar

3
 “A launch configuration is a description of how to launch a program. The program itself may be a Java

program, another Eclipse instance in the form of a runtime workbench, a C program, or something else.

Launch configurations are manifested in the Eclipse UI through Run > Run Configurations....”

(http://wiki.eclipse.org/FAQ_What_is_a_launch_configuration%3F)

 -

 - Page 8

ii. On the Classpath tab, enter the following for your path:

• /sharelab/sharann/S8369/myJar/HelloWorldProject.jar

 -

 - Page 9

iii. On the Environment tab, enter your PATH environment variable information,

including your paths to Java home and the library paths.

• Click the Select… button to select the checkbox for JAVA_HOME and

the checkbox for LIBPATH. Click OK.

• Also on the Environment tab, select the radio button: Replace native

environment with specified environment

d. Click Apply to save the changes to your launch configuration file.

e. Click Run to run the Java application on z/OS. Again, the program output is

displayed in the Console view. Congratulations! You have just finished running your

Java application on z/OS!

 -

 - Page 10

5. Running the application as a batch step from JCL

Besides using the host launch configuration, you can also run Java applications on

z/OS using the capabilities provided by the JZOS batch toolkit. This allows you to

invoke any Java programs from a z/OS batch environment.

a. Return to the z/OS Projects perspective.

b. On the Remote Systems view, expand the node MVS Files, then expand the “My

Data Sets” filter. Locate the data set SHARAnn.S8369.JCL. Expand it and then

highlight the member HELLOW.jcl, right mouse click to copy, and then paste it into

the data set SHARAnn.S8369.JZOS.JCL

c. Open the newly copied HELLOW.JCL.

d. Follow the instruction below to customize it:

i. Verify that

 PROCLIB JCLLIB ORDER = KIRK.JZOS.SAMPJCL

ii. Update

 JAVACLS=’com.sharann.HelloWorld’

iii. Verify that

 export JZOS_HOME= /usr/lpp/java/J6.0/lib/ext

 export JAVA_HOME=/usr/lpp/java/J6.0

iv. Update the CLASSPATH to point to the remote jar file, e.g.:

 CLASSPATH=/sharelab/sharann/S8369/myJar/HelloWorldProject.jar

Save the changes.

e. Next, submit this JCL to run the batch job. To submit the JCL. Do one of the

following:

i. On the editor, press ESC to set focus on the editor’s command line. Type

“sub” and press Return. Make note of your JOBID.

ii. Alternatively, on the Remote Systems view, select HELLOW.JCL, right-click

and then select Submit. Make note of your JOBID.

 -

 - Page 11

f. To view the job output, locate the JES node on the Remote Systems view, expand it

to see the filter “My Jobs”. Select it, right-click and then select Show in Table.

g. The Remote System Details view should be visible. Select the job output from the

queue, right-click to select Open. If you do not see your job, press the Refresh

button that is located on the toolbar area of this view.

h. Your job should have a return code of 0, and if all goes well, you will find the output

of the program displayed at the end of job output.

Congratulations! You have just completed the task of customizing a batch step from

a JCL to execute Java on z/OS!

 -

 - Page 12

Exercise 2 – Writing and running Java applications with an
affinity to z/OS

1. On the Package Explorer view, you will find the Java project PDSJavaProject.

Expand the project and package until you see the Java program. Open it in the editor

and familiarize yourself with the code. You will see a number of error markers in the

code. This is because the project has a few errors, including some unresolved

references to the class com.ibm.jzos.PdsDirectory located in the ibmjzos.jar
4
 file.

2. Make the following changes:

a. In the project, use the Refactor action to rename the package name to com.sharann.

Next, open the program, and update the package name at the top of the file.

b. Modify the following line

myPDS = “//’SHARAnn.S1112.COBOL’” with your assigned userid.

 Save your changes to the program.

c. Update the Java project properties to include the ibmjzos.jar file for compilation.

i. Go back to the Package Explorer view, select PDSJavaProject, right-click

and select Properties.

4
 The ibmjzos.jar file is part of the JZOS Batch Toolkit

Overview of tasks in this exercise:

1. Open the included Java project PDSJavaProject

2. Update the build path to include the external Jar file for compilation

3. Export the project as a remote jar file to the HFS

4. Running the application on z/OS using a Host Java Application Launch

Configuration

 -

 - Page 13

ii. Select Java Build Path from the left hand side, then select the Libraries tab,

and click on the Add External JARs… button. Browse to the location

SHARELabs\RDzJava\Exercise2\ to select ibmjzos.jar
5
. Click Open.

iii. Go to the Order and Export tab, and select the checkbox for ibmjzos.jar.

iv. Click OK to exit the Properties dialog. Expand the PDSJavaProject again,

and you shall see the ibmjzos.jar file added to your project (under the node

Referenced Libraries)

v. All the unresolved reference errors should be gone now. On the Problems

view, verify that you have no error shown.

5
 To save time, we have copied this file from the system to your desktop folder

“SHARELABs\RDzJava\Exercise2”. You can easily transfer files between host and workstation using the

Remote Systems view since, in addition to browsing your host files, you can also browse your workstation

folders and files using the Local Files node on this view.

 -

 - Page 14

3. Export the project as a remote jar file to HFS

a. Export the project as a Remote Jar file name: PDSJavaProject.jar, to

/Sharelab/sharann/S8369/myJar. Follow the same steps as you did in the first

exercise.

b. Verify that the export is successful by expanding the directory

/ShareLab/sharann/S8369/myJar/ to view the PDSJavaProject.jar file. (Note, if you

don’t see the jar file, try to do a Refresh from the context menu on the “myJar”

folder)

 -

 - Page 15

4. Run the application on z/OS using the Launch Configuration

Repeat the steps you performed in Exercise 1 by creating a new host Java application

launch configuration.

a. Go to the menu, click Run > Run Configurations…

b. From the dialog’s navigation panel, locate the previous configuration

“RunHelloWorldProject” you created, right-click on it, select Duplicate. Give this

new launch configuration a name, such as RunPDSJavaProject.

c. Fill in the details on the Main, Classpath, and Environment tabs using the

information below.

i. On the Main tab, enter the following (Suggestion: Use the Browse… button

whenever possible to avoid typos)

• Connection: mvs1.centers.ihost.com

• Select the checkbox “Has associated Java project”.

• Project: PDSJavaProject

• Main class: com.sharann.Pdslist

• Remote working directory: /sharelab/sharann/S8369/myJar

 -

 - Page 16

ii. On the Classpath tab, update it to include the location of the jar file:

• /Sharelab/sharann/S8369/myJar/PDSJavaProject.jar

iii. The Environment variables are the same as previous, so no changes need to be

made.

 -

 - Page 17

iv. With all the above changes made, press Run to execute. You should see the

output in the Console view:

--- End of Lab ---

 -

 - Page 18

Appendix

About the technology

Java is a programming language that continues to gain popularity. It is supported

on a variety of computing platforms including Windows®, Sun Solaris, and z/OS. Yes,

the mainframe.

Eclipse, an open source project, provides a sophisticated, extendable, integrated

development environment (IDE) for writing Java applications. With the exception of its

team support, which enables groups of users to work with a code repository such as CVS,

Eclipse operates as a single user IDE in which all work is performed in a workspace on

your local hard drive.

Many commercial products have been built to extend the base Eclipse capabilities.

IBM Rational Developer for System z provides access to the mainframe and lets you

manipulate artifacts that reside on the mainframe with a modern, intuitive, and familiar

user interface. It “includes capabilities that can help make traditional mainframe

development, Web development, and integrated service-oriented architecture (SOA)-

based composite development fast and efficient. COBOL, PL/I, C, C++, High-Level

Assembler, and Java™ developer communities can also be more productive when they

take advantage of these functions. IBM Rational Developer for System z integrates with

and extends the IBM Rational Software Delivery Platform (SDP).
6

IBM JZOS Batch Toolkit for z/OS
®

 SDK is “a set of tools that addresses many of

the functional and environmental shortcomings in current Java™ batch capabilities on

z/OS. It includes a native launcher for running Java applications directly as batch jobs or

started tasks, and a set of Java methods that make access to traditional z/OS data and key

system services directly available from Java applications. Additional system services

include console communication, multiline WTO (write to operator), and return code

passing capability. In addition, JZOS provides facilities for flexible configuration of the

run-time environment, and it allows intermediate data to be seen via z/OS System

Display and Search Facility (SDSF). Java applications can be fully integrated as job steps

in order to augment existing batch applications.”
7

Reference

Title Location
Writing Java applications

on System z

http://www.ibm.com/developerworks/websphere/library/techarticles/0703_england/0703_e

ngland.html

IBM Rational Developer

for System z

http://www-306.ibm.com/software/awdtools/rdz/

IBM JZOS Batch Toolkit

for z/OS® SDK

http://www-03.ibm.com/servers/eserver/zseries/software/java/products/jzos/overview.html

6
 http://www-306.ibm.com/software/awdtools/rdz/

7
 http://www.alphaworks.ibm.com/tech/zosjavabatchtk

